G484 The Newtonian World

Question			Expected Answers	Marks	Additional guidance
1	a	i	Force is proportional to the rate of change of momentum (QWC This mark can only be scored if momentum is spelled correctly)	B1	Allow "equal" instead of proportional, allow "change in momentum over time" (WTTE) Do not allow $\mathrm{F}=\mathrm{ma}$ or in words
		ii	When one body exerts a force on another the other body exerts an equal (in magnitude) and opposite (in direction) force on the first body (WTTE)	B1	Must refer to two bodies. Do not allow a bare "Action and reaction are equal and opposite".
	b	i	area: number of squares correctly counted: 20-24 (500-600) $=\mathbf{2 . 2}$ Ns \{allow 2.0 to 2.4$\}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	First mark for correct number of squares Second mark for correct conversion to Ns If 2Δ s assumed, area $=1.68 \mathrm{Ns}$ and scores 1 mark 1680 scores 0 (2 errors) but 2200 scores 1 mark
		ii	Impulse QWC must be spelled correctly	B1	No not allow change of momentum.
		iii	recall of Impulse $=$ change in momentum OR I $=\mathrm{mv}$ OR mv -mu ($\mathrm{mv}=2.2$ hence $\mathrm{v}=2.2 / 0.046$) $\mathrm{v}=\mathbf{4 7 . 8} \mathrm{ms}^{-1}$ (hence about 50) (2.0 gives 43.5, 2.1 45.7, $2.350,2.452 .2$)	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 'Area = mv' Allow ecf from cand's value for (b)(i): e.g. $\mathrm{mv}=1.68 \mathrm{v}=36.5 \mathrm{~ms}^{-1}$ and scores 2 marks $\mathrm{mv}=2200 \mathrm{v}=47800 \mathrm{~ms}^{-1}$ also scores 2marks! (ecf)
		iv	initial horizontal velocity $=50 \cos 42=\left(37.2 \mathrm{~ms}^{-1}\right)$ initial vertical velocity $=50 \sin 42=\left(33.5 \mathrm{~ms}^{-1}\right)$ time taken to reach maximum height $=33.5 / 9.8$ ($=3.41 \mathrm{~s}$) total time to reach ground $=2 \times 3.41=6.82 \mathrm{~s}$ hence distance $=50 \cos 42 \times t o t a l$ time $=37.2 \times 6.82=253 \mathrm{~m}$ any valid assumption: eg no air resistance / horizontal velocity is constant/ acceleration due to gravity is 9.8 (or 10) $\mathrm{ms}^{-2} /$ ball follows a parabolic or symmetrical path (WTTE).	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \\ & \\ & \mathrm{~B} 1 \end{aligned}$	Allow 1 mark for correct identification of cosine and sine components of v, without substitution. Allow ecf for cand's value of v throughout e.g if 47.8 is used for v , distance $\mathbf{= 2 3 2} \mathbf{~ m}$ and this scores four marks. if 47800 is used distance $=2.32 \times 10^{8} \mathrm{~m}$! Also allow "only the gravitational force is acting" "no friction" "only gravity"
			Total	12	

Question			Expected Answers	Marks	Additional guidance
2	a	i	$(v=2 \pi r / t) t=2 \pi 60 / 0.26=1450 \mathrm{~s}$	B1	Correct answer is 1449.96 hence allow 1.4×10^{3} Do not allow a bare 1.5×10^{3}
		ii	$\begin{aligned} & \text { (ii) correct substitution into } \mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}: \text { eg } \mathrm{F}= \\ & \left(9.7 \times 10^{3} \times 0.26^{2}\right) / 60 \\ & \mathrm{~F}=\mathbf{1 0 . 9} \mathrm{N} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 11 N
	b	i	THREE correct arrows at A, B and C all pointing towards the centre (judged by eye)	B1	Ignore starting point of arrow
		ii	1. Greatest reaction force is at \mathbf{C} because it supports weight of sock AND provides the required upward resultant (centripetal) force (WTTE) 2. Least at A because sock's weight provides part of the required downward resultant (centripetal) force (WTTE)	M1 A1 B1	This is a mandatory M mark. The second mark cannot be gained unless this is scored. Any indication that candidates think that the centripetal force is a third force loses this second and possibly the next mark. They must make correct reference to the resultant force that provides the required centripetal force/acceleration. Allow answers using the equation $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$ such as $\mathrm{N}_{\mathrm{c}}-\mathrm{mg}(\mathrm{at} \mathrm{C})=$ centripetal force $O R \mathrm{mv}^{2} / \mathrm{r}$ OR $m g+N_{A}($ at $A)=$ centripetal force $O R ~ m v^{2} / r$
			Total	7	

Question			Expected Answers	Marks	Additional guidance
3	a		arrows (at least one) indicating direction is towards the planet. All lines looking as though they would meet at the centre judged by eye	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	At least 4 drawn and care taken Some of the lines must be outside the planet.
	b	i	$\begin{aligned} & \left(\mathrm{mg}=\mathrm{GMm} / \mathrm{r}^{2} \text { and hence) } \mathrm{M}=\mathbf{g r}^{2} / \mathrm{G}\right. \\ & \text { correct substitution } \mathrm{M}=24.9 \times\left(7.14 \times 10^{7}\right)^{2} / 6.67 \times 10^{-11} \\ & \\ & =1.9 \times 10^{27} \mathrm{Kg}\left(\text { (i.e about } \mathbf{2 \times 1 0 ^ { 2 7 })}\right. \end{aligned}$	$\begin{aligned} & \hline \text { C1 M1 } \\ & \text { A1 } \end{aligned}$	Equation needs to be rearranged as shown for C1 mark
		ii	$\begin{aligned} & \text { correct substitution into } \mathrm{V}=(4 / 3) \pi \mathrm{r}^{3}=(4 / 3) \pi\left(7.14 \times 10^{7}\right)^{3}\left\{=1.52 \times 10^{24} \mathrm{~m}^{3}\right\} \\ & \text { density }=\text { mass/volume }=1.9 \times 10^{27} / 1.52 \times 10^{24}=\mathbf{1 2 5 0} \mathrm{kg} \mathrm{~m}^{-3} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	If $\mathrm{m}=2 \times 10^{27} \mathrm{~kg}$ is used d = 1312 scores 2 marks
			Total	7	

Question			Expected Answers	Marks	Additional guidance
5	a	-	correct substitution in $E=m c \Delta \theta$: eg $E=0.08 \times 4180 \times 40$ ratio $=0.08 \times 4180 \times 40 / 5 \times 10^{-5} \times 2460 \times 40=\mathbf{2 . 7 (2)} \times \mathbf{1 0}^{3}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow 80x4180/0.05x2460 (13376/4.92) for this C1 mark. 1: 2700 does not score the second mark.
		ii	Any valid advantage: eg car cooling systems because it absorbs large amounts of heat for a small rise in temp OR ideal fluid for central heating systems because it releases large amounts of heat for a small drop in temp. OR helps to maintain constant body temperature since body is mainly water which absorbs lots of heat for small temp rise	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	First mark for valid situation Second mark for correct explanation of why the high value of the shc is helpful.
	b		labelled diagram (2 marks): liquid in vessel with electrical heater (submerged) and thermometer ammeter connected in series between supply and heater AND voltmeter connected across heater. list of measurements (3 marks): mass of liquid, initial and final temperature/change of temp (of the liquid) I, V and t values OR energy meter readings OR power and time explanation (1 mark): $E=m c \Delta \theta$ rearranged to $c=E / m \Delta \theta$ uncertainties (2 marks) each stated with explanation of remedy: e.g. - heat losses (makes E or $\Delta \theta$ uncertain) (solved by) insulating beaker/use lid - false temp reading (solved by) stir the liquid - temp continues to rise after heater switched off measure highest value - thermal capacity of vessel (solved by) take this into account in calculation	B1 B1 B1 B1 B1 B1 $\max 2$	Allow use of joule meter if convincingly connected to heater and power supply i.e. 2 wires from power supply two wires to heater Allow such things as "find mass", "known mass", "10K temp rise", "time for 2 minutes" "known power", etc. Allow ItV/m $\Delta \theta$. Do not allow "repeat the experiment". Give credit for valid suggestions if mentioned anywhere in the description of the experiment.
			Total	12	

Question			Expected Answers	Marks	Additional guidance
Q 6	a		(n) number of moles (T) absolute temperature OR thermodynamic temp OR temp measured in Kelvin	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Accept \mathbf{K} for Kelvin
	b	i	(When gas is heated) molecules gain KE/move faster this would cause more collisions/sec (with the walls) collisions exert more force/greater change in momentum per collision For constant pressure fewer collisions/sec are required Constant pressure is achieved by the increase in volume OR with a bigger volume there are fewer collisions/sec	B1 B1 B1 B1 B1 $\max 4$	If no reference to rate of collisions, max of 3 marks This must be explained fully but can be done with reference to $P=(1 / 3) \rho\left\langle c^{2}\right\rangle$
		ii	$\begin{array}{r} \text { correct substitution in } \mathrm{pV} / \mathrm{T}=\text { constant: } \mathrm{OR} \mathrm{~V} / \mathrm{T}=\text { constant } \\ \text { e.g. } 1.2 \times 10^{-4} / 293=\mathrm{V} / 363 \\ \mathrm{~V}=(363 / 293) \times 1.2 \times 10^{-4}=\mathbf{1 . 4 9 \times 1 0 ^ { - 4 } \mathrm { m } ^ { 3 } .} \end{array}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Both temps must be in Kelvin. Allow $1.5 \times 10^{-4} \mathrm{~m}^{3}$
	C		Use of $1 / 2 \mathrm{~m}<\mathrm{c}^{2}>=3 / 2 \mathrm{kT}$ Correct substitution: $\sqrt{ }\left\langle\mathrm{c}^{2}\right\rangle=\sqrt{ }(3 \mathrm{kT} / \mathrm{m})=\sqrt{ }\left(3 \times 1.38 \times 10^{-23} \times 363 / 4.7 \times 10^{-26}\right)$ $\checkmark<\mathrm{c}^{2}>=565 \mathrm{~ms}^{-1}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	If $90^{\circ} \mathrm{C}$ is used $\sqrt{ }\left\langle\mathrm{c}^{2}\right\rangle=282 \mathrm{~ms}^{-1}$ and scores 2 marks Allow $570 \mathrm{~ms}^{-1}$ If they do not square root, they get $319225 \mathrm{~ms}^{-1}$ and score 2 marks
			Total	11	

